WisFaq!

\require{AMSmath} geprint op vrijdag 22 november 2024

Bewijs dat twee limieten gelijk zijn zodra één van de twee bestaat

Gegeven zijn een functie f: $\mathbf{R}\to\mathbf{R}$ en een punt a $\in\mathbf{R}$. Bewijs dat $lim_{x→a}f(x)=lim_{h→0}f(a+h)$ zodra een van de twee limieten bestaat.

Tot nu toe heb ik de definities opgeschreven, dus als $lim_{x→a}f(x)$ bestaat, stel deze gelijk aan b, dan als x$\in$dom(f) en d(x,a)$<$d dan d(f(x),b)$<$e.
En als $lim_{h→0}f(a+h)$ bestaat, stel deze gelijk aan c, dan als h$\in$dom(a+h) en d(h,0)$<$d dan d(f(a+h),c)$<$e.

Mijn volgende stap was om te proberen te bewijzen dat als $lim_{x→a}f(x)$ bestaat $lim_{h→0}f(a+h)$ ook bestaat, en andersom.
Hier liep ik vast.
Om aan te tonen dat ze gelijk aan elkaar zijn wilde ik de driehoeksongelijkheid gebruiken, maar dat lukte ook niet.

Danique
26-4-2017

Antwoord

Dit is niet veel meer dan een vertaling: $\lim_{x\to a}f(x)=b$ betekent
$$
(\forall\varepsilon > 0)(\exists\delta > 0)(\forall x)\bigl(0 < |x-a| < \delta \Rightarrow |f(x)-b| < \varepsilon\bigr)
$$Dit kun je vertalen naar $\lim_{h\to0}f(a+h)=b$
$$
(\forall\varepsilon > 0)(\exists\delta > 0)(\forall h)\bigl(0 < |h| < \delta \Rightarrow |f(a+h)-b| < \varepsilon\bigr)
$$door je je te realiseren dat $0 < |h| < \delta$ hetzelfde betekent als $0 < |a+h-a| < \delta$; het enige dat gebeurt is dat de $x$ uit de eerste definitie in de tweede definitie geschreven wordt als $a+h$ (of $x-a=h$).

Uitgaande van het bestaan van de eerste limiet neem je bij gegeven $\varepsilon$ een $\delta$ als daar gegeven. Dan volgt meteen:
als $0 < |h| < \delta$ dan $0 < |(a+h)-a| < \delta$ en dus $|f(a+h)-b| < \varepsilon$.

kphart
26-4-2017


© 2001-2024 WisFaq
WisFaq - de digitale vraagbaak voor het wiskunde onderwijs - http://www.wisfaq.nl

#84329 - Limieten - Student universiteit