WisFaq!

\require{AMSmath} geprint op zondag 24 november 2024

Een toepassing van de differentiaalrekening

In mijn wiskundeboek staat de volgende vraag:

Een fabrikant van een bepaald type tv-apparaat wil de kostprijs per apparaat minimaliseren. De kostprijs per apparaat wordt bepaald door de productiekosten (die omgekeerd evenredig zijn met het aantal per maand te produceren tv-apparaten) en de opslag/voorraadkosten (die recht evenredig zijn met het aantal per maand te produceren tv-apparaten). Bij een maandproductie van 1600 stuks bleek de kostprijs per toestel 820 euro. Opvoeren van de productie tot 2500 stuks bleek echter exact dezelfde kostprijs per toestel op te leveren. Welk aantal en tegen welke kostprijs kan de fabrikant het beste produceren?

Ik heb ten eerste van de gegeven definities constanten gemaakt. Dus bij de productiekosten(b) en opslag/voorraadkosten(c). De prijs per voorraadkosten (y) en de prijs per productiekosten(z).

Ten tweede heb ik een variabele geplaatst bij het aantal per maand te produceren tv-apparaten. De kostprijs per apparaat(a) is een functie van het aantal per maand te produceren tv-apparaten(x).

Na het benoemen van variabelen heb ik uit de tekst formules gevormd: a=b+c ; b=z/x ; c = y·x

Daarna heb ik de formule van a als één formule geschreven als: a=z/x + y·x

Deze formule heb ik gedifferentieerd zodat ontstaat: a(afgeleide)= z/x2 + y.

Deze afgeleide probeer ik aan 0 gelijk te stellen en dat is het punt waarop ik vastloop. Graag zou ik willen weten wat ik heb fout heb gedaan of waaruit ik verder kan komen.

Bij voorbaat dank

Met vriendelijke groet

Erwin den Boer
17-4-2017

Antwoord

Je oplossing gaat heel lang goed. Je afgeleide is niet helemaal goed, die moet
$$
-\frac{z}{x^2}+y
$$
zijn (minteken!). Nul stellen en oplossen is dan geen probleem, er komt
$$
x^2=\frac zy
$$
Uit de gegevens kun je ook nog $z$ en $y$ bepalen; er is namelijk gegeven dat
$$
820=\frac1{1600}z+1600y
$$
en
$$
820=\frac1{2500}z+2500y
$$

kphart
18-4-2017


© 2001-2024 WisFaq
WisFaq - de digitale vraagbaak voor het wiskunde onderwijs - http://www.wisfaq.nl

#84296 - Differentiëren - Student hbo