WisFaq!

\require{AMSmath} geprint op zaterdag 23 november 2024

Re: Voor welke waarden van a raakt de grafiek de x-as?

Door gebruik te maken van de quotiëntregel kom ik op de volgende afgeleide:
fa' = x2 + 3x + 1/(x + 1)2 = 0.

1) Is dit correct?
2) Is de volgende stap dat ik de discriminant van x2 + 3x + 1 moet berekenen?

Mario
10-4-2017

Antwoord

Voor de afgeleide krijg ik iets anders:

$
\eqalign{
& f(x) = \frac{{\left( {x^2 + ax + a} \right)}}
{{x + 1}} \cr
& f'(x) = \frac{{\left( {2x + a} \right)(x + 1) - \left( {x^2 + ax + a} \right)}}
{{\left( {x + 1} \right)^2 }} \cr
& f'(x) = \frac{{2x^2 + 2x + ax + a - x^2 - ax - a}}
{{\left( {x + 1} \right)^2 }} \cr
& f'(x) = \frac{{x^2 + 2x}}
{{\left( {x + 1} \right)^2 }} \cr}
$

De afgeleide is 0 als de teller nul is. Lukt het dan?

WvR
10-4-2017


© 2001-2024 WisFaq
WisFaq - de digitale vraagbaak voor het wiskunde onderwijs - http://www.wisfaq.nl

#84252 - Functies en grafieken - Leerling bovenbouw havo-vwo