Bepaal de punten van de vlakken gamma:5x+3y=2 en omega:3y-5z=8 die op een gelijke afstand van de vlakken alpha:2x+y+z-2=0 en beta:x+2y-z+4=0 liggen.
MvgHans
27-2-2017
De punten die op gelijke afstand liggen van alpha en beta vind je in de bissectricevlakken van alpha en beta. De vergelijkingen van deze twee bissectricevlakken worden gegeven door:
|2x + y + z - 2| / √6 = |x + 2y - z + 4| / √6.
De punten die je zoekt moeten zowel in gamma als in omega liggen en liggen daarom op de snijlijn van deze twee vlakken. Bepaal dus die snijlijn en snijd die lijn vervolgens met elk van de twee bissectricevlakken.
MBL
1-3-2017
#83931 - Ruimtemeetkunde - 3de graad ASO