Hallo, ik weet niet hoe ik hieraan zou moeten beginnen. Subs?
het is een onbepaalde integraal
Integraal van (eaxˇcos(bx))dx
Ik was zo begonnen
u= cosbx
du=-sinbxˇb
dv= eax
v= eax ˇ 1/a $\to$ Dit werd fout gerekend het moest a zijn ipv 1/a alleen heb ik geen idee waarom.
Alvast bedanktjoanna
16-12-2016
Dat van die $\eqalign{\frac{1}{a}}$ lijkt me wel in orde:
$
\eqalign{\int {e^{ax} \cos (bx)\,dx = \frac{1}
{a}e^{ax} \cdot \cos (bx) - \int {\frac{1}
{a}e^{ax} \cdot b \cdot - \sin (bx)\,dx}}}
$
Je kunt 's kijken naar Integraal van exˇcos(x). Dat lijkt sprekend, behalve dan dat jij nog een $a$ en een $b$ er bij hebt staan. Dat maakt (in principe) voor de methode niet uit, maar je moet wel even goed blijven opletten.
Probeer maar 's.
Ik denk dat je uiteindelijk zoiets krijgt als:
$
\eqalign{\int {e^{ax} \cos (bx)\,dx = } \frac{{e^{ax} }}
{{a^2 + b^2 }}\left( {a \cdot \cos (bx) + b \cdot \sin (bx)} \right)+C}
$
Leuk...
WvR
17-12-2016
#83501 - Integreren - 3de graad ASO