Hallo
Hoe noem je het punt x=-2 bij de functie f(x)=x3-3x2-9x+2 op het interval [-2,2]?
Is het een lokaal minimum of enkel een eindpunt?
Klopt het dat een eindpunt een absoluut min/max kan zijn, maar geen lokaal min/max?
Gr.L
8-11-2016
Kijk naar de definitie van lokaal minimum: $f(a)$ is een lokaal minimum als er een intervalletje $(p,q)$ om $a$ is zo dat $f(x)\ge f(a)$ voor alle $x$ die in de doorsnede van dat interval en het domein liggen.
Geldt dat hier? Zo ja, dan heeft $f$ een lokaal minimum in $2$.
Globaal minimum betekent dat $f(x)\ge f(a)$ voor alle $x$ in het domein.
Geldt dat hier?
Een eindpunt kan best een lokaal minimum opleveren dat geen globaal minimum is: neem bijvoorbeeld $-(x-1)^2$ op het interval $[-1,2]$.
kphart
8-11-2016
#83253 - Functies en grafieken - Leerling bovenbouw havo-vwo