Beste,
Kwadraatafsplitsen heb ik nog niet gezien. Is er nog een andere mogelijkheid om het op te lossen? Kan ik er een kwadratische vergelijking van maken en dan de discriminant zoeken?David
2-7-2016
't Is al een kwadratische vergelijking, dus de ABC-formule dan maar?
$\eqalign{
& {z^2} - (2 + 4j) \cdot z - 3 + 6j = 0 \cr
& a = 1,\,\,b = - 2 - 4j\,\,en\,\,c = - 3 + 6j \cr
& D = {\left( { - 2 - 4j} \right)^2} - 4 \cdot 1 \cdot \left( { - 3 + 6j} \right) = - 8j \cr
& z = \frac{{ - \left( { - 2 - 4j} \right) \pm \sqrt { - 8j} }}{{2 \cdot 1}} = \frac{{2 + 4j \pm \left( {2 - 2j} \right)}}{2} \cr
& z = \frac{{2 + 4j + 2 - 2j}}{2} \vee z = \frac{{2 + 4j - 2 + 2j}}{2} \cr
& z = \frac{{4 + 2j}}{2} \vee z = \frac{{6j}}{2} \cr
& z = 2 + j \vee z = 3j \cr} $
Zie ook 2. Kwadraatafsplitsen
PS
Maar ik denk dat je uiteindelijk niet aan kwadraatafsplitsen kan ontkomen. De ABC-formule is kwadraatafsplitsen voor het algemene geval...:-)
- Zie bijvoorbeeld cirkelvergelijkingen
WvR
2-7-2016
#82518 - Complexegetallen - Student Hoger Onderwijs België