Beste
Kunt u me helpen om dit te 'bewijzen'?
sin(a-b)/sin(a+b) = (tana-tanb)/(tana-tanb)
en
tan2a = tana·(1+(1/cosa)
Welke formules moet ik gebruiken?
Alvast bedankt!Sam
20-4-2016
Beste Sam,
Ik weet natuurlijk niet welke formules je al gezien hebt en mag gebruiken, maar ik veronderstel dat je formules kent voor $\sin(a-b)$ en $\sin(a+b)$? Gebruik deze in teller en noemer van het linkerlid en deel vervolgens zowel teller als noemer door $\cos a \cos b$; vereenvoudig dan.
Voor de tweede formule: er ontbreekt een haakje, maar als je
$$\tan(2a) = \tan a \left(1+\frac{1}{\cos a} \right)$$bedoelt, dan klopt er iets niet: dat is geen identiteit...
Het linkerlid bestaat bijvoorbeeld niet voor $x = \pi/4$, terwijl het rechterlid daar $1+\sqrt{2}$ is. Foutje in de opgave?
mvg,
Tom
td
20-4-2016
#78194 - Goniometrie - 3de graad ASO