WisFaq!

\require{AMSmath} geprint op vrijdag 22 november 2024

Re: Re: Re: Matrix formule

Beste

als n=k+1, hoe moet je dan Ak = Ak+1 x A bewijzen?

Ak+1 = Ak x A en dan?

M.v.g.

Rachel
8-10-2015

Antwoord

Beste Rachel,

Onze notaties lopen nu misschien wat door elkaar. Ik probeer jouw notatie te volgen. De gelijkheid is duidelijk correct voor $n=1$. Veronderstel dat het klopt voor $n=k$, dat wil zeggen dat:$$A^k = \left(\begin{array}{cc} 0 & 2^{k} \\ 0 & 2^{k} \end{array}\right)$$De vraag is nu of de formule dan ook klopt voor $n=k+1$; controleer door $A^{k+1}$ uit te rekenen als $A.A^k$, dus:
$$A^{k+1} = A.A^{k} = \left(\begin{array}{cc} 0 & 2 \\ 0 & 2 \end{array}\right) \left(\begin{array}{cc} 0 & 2^{k} \\ 0 & 2^{k} \end{array}\right) = \ldots$$Werk uit en verifieer dat het resultaat inderdaad gelijk is aan$$\left(\begin{array}{cc} 0 & 2^{k+1} \\ 0 & 2^{k+1} \end{array}\right)$$Lukt dat?

mvg,
Tom

td
8-10-2015


© 2001-2024 WisFaq
WisFaq - de digitale vraagbaak voor het wiskunde onderwijs - http://www.wisfaq.nl

#76501 - Lineaire algebra - 3de graad ASO