Welk is de formule om met de gekende waarde van a, b en $\alpha$ (zie tekening) de onderdelen straal, raaklijn, koorde, … van de cirkelboog te berekenen?Wouters Chris
11-8-2015
Plaats het onderste punt in de oorsprong en noem de straal van de cirkel even $r$. Met behulp van de stelling van Pythagoras volgt dat het bovenste punt de coördinaten $(0,r/\tan\frac\alpha2)$ heeft.
Het punt op de cirkel dat je vanuit het hoogste punt bereikt door $a$ langs de lijn te gaan en dan $b$ naar links heeft coördinaten $-a\sin\frac\alpha2+b\cos\frac\alpha2$ en $r/\tan\frac\alpha2-a\cos\frac\alpha2-b\sin\frac\alpha2$. Als je deze kwadrateert en optelt moet er $r^2$ uit komen. Na wat werk kom je uit op
$$
r^2\tan^2\frac\alpha2-2(a\tan\frac\alpha2+b)r+(a^2+b^2)=0
$$
Dat is een kwadratische vergelijking in $r$ en verder makkelijk op te lossen.
kphart
21-8-2015
#76099 - Analytische meetkunde - Iets anders