WisFaq!

\require{AMSmath} geprint op zaterdag 23 november 2024

Gelijkmatige convergentie

Wat is het verschil tussen gelijkmatige en puntsgewijze convergentie?

Nimmegeers Ben
3-8-2015

Antwoord

Bij uniforme (=gelijkmatige) convergentie van fn(x) naar f(x) hangt de convergentie niet af van x. Met andere woorden: bij elke epsilon $>$ 0 is er een waarde N zodat bij n$>$N geldt |fn(x)-f(x)|$<$ epsilon, ONGEACHT de waarde van x. Idee is dat voor elke x de functies fn(x) ongeveer even hard convergeren naar f(x).
Voorbeeld: fn(x) = sin(x)/n nadert uniform tot f(x)=0 (en dan dus ook puntsgewijs, want uniforme convergentie is sterker)

Bij puntsgewijze convergentie is de convergentiesnelheid wel afhankelijk van de waarde van x. Voorbeeld: fn(x) = sin(x/n) nadert puntsgewijs tot f(x)= 0 maar niet uniform

Met vriendelijke groet
JaDeX

jadex
4-8-2015


© 2001-2024 WisFaq
WisFaq - de digitale vraagbaak voor het wiskunde onderwijs - http://www.wisfaq.nl

#76083 - Rijen en reeksen - Student universiteit België