Bedankt
Ik snap niet hoe je van de vermenigvuldiging van de matrices op k=m 2l=m uitkomt, want als je ze vermenigvuldigt kom je op het volgende uit:
K= 0,3K + 0,4L + 0,5M
L= 0,2K + 0,4L + 0,1M
M= 0,5K + 0,2L + 0,4M
Zou je dit alsjeblieft kunnen uitschrijven?
Bedankt alvastThomas
9-6-2015
Er zijn allerlei chique manieren om stelsels van vergelijkingen op te lossen. Maar dat zal wel niet de bedoeling zijn dus proberen we 't maar 's uit het blote hoofd...
$
\begin{array}{l}
\left\{ \begin{array}{l}
0,3K{\rm{ }} + {\rm{ }}0,4L{\rm{ }} + {\rm{ }}0,5M = K \\
0,2K{\rm{ }} + {\rm{ }}0,4L{\rm{ }} + {\rm{ }}0,1M = L \\
0,5K{\rm{ }} + {\rm{ }}0,2L{\rm{ }} + {\rm{ }}0,4M = M \\
\end{array} \right. \\
\left\{ \begin{array}{l}
- 0,7K{\rm{ }} + {\rm{ }}0,4L{\rm{ }} + {\rm{ }}0,5M = 0 \\
0,2K{\rm{ }} - {\rm{0}}{\rm{,6}}L{\rm{ }} + {\rm{ }}0,1M = 0 \\
0,5K{\rm{ }} + {\rm{ }}0,2L{\rm{ }} - 0,6M = 0 \\
\end{array} \right. \\
\left\{ \begin{array}{l}
- 2,1K{\rm{ }} + {\rm{ 1}}{\rm{,2}}L{\rm{ }} + {\rm{ 1}},5M = 0 \\
0,4K{\rm{ }} - 1,{\rm{2}}L{\rm{ }} + {\rm{ }}0,2M = 0 \\
0,5K{\rm{ }} + {\rm{ }}0,2L{\rm{ }} - 0,6M = 0 \\
\end{array} \right. \\
\left\{ \begin{array}{l}
- 1,7K{\rm{ }} + {\rm{ 1}},7M = 0 \\
0,4K{\rm{ }} - 1,{\rm{2}}L{\rm{ }} + {\rm{ }}0,2M = 0 \\
0,5K{\rm{ }} + {\rm{ }}0,2L{\rm{ }} - 0,6M = 0 \\
\end{array} \right. \\
\left\{ \begin{array}{l}
K = M \\
0,4M{\rm{ }} - 1,{\rm{2}}L{\rm{ }} + {\rm{ }}0,2M = 0 \\
0,5M + {\rm{ }}0,2L{\rm{ }} - 0,6M = 0 \\
\end{array} \right. \\
\left\{ \begin{array}{l}
K = M \\
0,6M{\rm{ }} - 1,{\rm{2}}L{\rm{ = }}0 \\
- 0,1M + {\rm{ }}0,2L{\rm{ = }}0 \\
\end{array} \right. \\
\left\{ \begin{array}{l}
K = M \\
M{\rm{ = 2}}L \\
\end{array} \right. \\
\end{array}
$
Hopelijk helpt dat!
WvR
10-6-2015
#75797 - Lineaire algebra - Leerling bovenbouw havo-vwo