Hallo, ik kom niet uit de volgende vraag:
Gegeven is de functie fp(x)= sin(x)+cos(x-p) met domein [0, 2$\pi$].Ik heb voor a. geprobeerd gewoon wat waardes in te vullen voor p, omdat ik niet wist hoe ik het moest berkenen.. Ik vond in ieder geval dat bij p=1,5$\pi$ de grafiek gelijk is aan y=0.
- Voor welke waarden van p is de grafiek van fp een lijnstuk? Geef een duidelijke berekening.
- Voor welke waarden van p is het bereik van fp zo groot mogelijk? Geef ook nu een duidelijke berekening.
Aan b. ben ik nog niet toegekomen omdat ik dus niet zo goed weet waar te beginnen...
Zou u me een beetje de goede richting op kunnen wijzen?
Alvast bedankt!Julia
27-5-2015
Je krijgt bij f een lijnstuk als sin(x) gelijk is aan -cos(x-p). Dus je moet deze vergelijking oplossen:
sin(x)=-cos(x-p)
Zou dat lukken?
Bij b. doe je net zoiets maar dan anders! Het domein zou maximaal [-2,2] kunnen worden. Dan zou sin(x) en cos(x-p) op 'hetzelfde moment' hun minimum en maximum moet bereiken.
Los op: sin(x)=cos(x-p)
Wat denk je? Zou je deze vergelijking moeten oplossen? Zou dat dan het antwoord geven wat je zoekt?
WvR
27-5-2015
#75716 - Goniometrie - Leerling bovenbouw havo-vwo