WisFaq!

\require{AMSmath} geprint op zondag 24 november 2024

Re: Nulpunten van veeltermfuncties

In de oplossing van het boek staat er dan dat je Horner moet toepassen met 1/2...
maar hoe komen zij daaraan? Hoe kan je dat vinden?
Dat is toch geen deler van de constante term (reststelling)

Tim B.
5-5-2015

Antwoord

Beste Tim,

Het ontbinden zoals in mijn vorige reactie is wellicht de snelste methode.

Als je toch Horner wil gebruiken, heb je een (kandidaat-)nulpunt nodig. De delers van de constante term zijn de mogelijke gehele nulpunten, maar daarmee test je niet alle mogelijke rationale nulpunten. Daarvoor moet je ook kijken naar de coëfficiënt van de hoogstegraadsterm, in dit geval 2.

Als $a_n$ de coëfficiënt van de hoogstegraadsterm is en $a_0$ de constante term, dan zijn rationale kandidaat-nulpunten van de vorm $p/q$ met $p$ een deler van $a_0$ en $q$ een deler van $a_n$. In jouw geval zijn dus ook 1/2 en -1/2 mogelijke nulpunten. Je kan dan verder met Horner.

mvg,
Tom

td
5-5-2015


© 2001-2024 WisFaq
WisFaq - de digitale vraagbaak voor het wiskunde onderwijs - http://www.wisfaq.nl

#75505 - Functies en grafieken - 2de graad ASO