Ik heb een kwadratische bezierkromme met de volgende punten: P0=(0,0) en P2=(1,0). Ook is de top van de kromme gegeven (deze kan variëren maar we nemen (0.25,0.75) als voorbeeld). Ik wil een formule opstellen om de positie van P1 te kunnen berekenen, is dit mogelijk?
Alvast bedanktJarvis
13-4-2015
Volgens Wikipedia | Kwadratische Bezierkromme moet gelden:
$
B(t) = \left( {1 - t} \right)^2 P_0 + 2t\left( {1 - t} \right)P_1 + t^2 \cdot P_2 \,\,voor\,\,t \in [0,1]
$
Met P0=(0,0), P1=(x,y) en P2=(1,0) geldt:
$
\begin{array}{l}
B(t) = \left\{ \begin{array}{l}
2t\left( {1 - t} \right)P_1 + t^2 \\
2t\left( {1 - t} \right)P_1 \\
\end{array} \right. \\
B(t) = \left\{ \begin{array}{l}
2t\left( {1 - t} \right) \cdot x + t^2 \\
2t\left( {1 - t} \right) \cdot y \\
\end{array} \right. \\
\end{array}
$
Oftewel:
$
\left\{ \begin{array}{l}
x = \frac{{4t^2 - 1}}{{8t(t - 1)}} \\
y = \frac{3}{{8t(1 - t)}} \\
\end{array} \right.
$
Voor de 'top' van de kromme geldt:
$
y' = 0 \Rightarrow t = \frac{1}{2}
$
Invullen geeft:
$
\begin{array}{l}
\left\{ \begin{array}{l}
x = \frac{{4\left( {\frac{1}{2}} \right)^2 - 1}}{{8 \cdot \frac{1}{2}(\frac{1}{2} - 1)}} = 0 \\
y = \frac{3}{{8 \cdot \frac{1}{2}(1 - \frac{1}{2})}} = 1\frac{1}{2} \\
\end{array} \right. \\
B(t) = \left\{ \begin{array}{l}
t^2 \\
2t\left( {1 - t} \right) \cdot 1\frac{1}{2} \\
\end{array} \right. \\
B(t) = \left\{ \begin{array}{l}
t^2 \\
3t\left( {1 - t} \right) \\
\end{array} \right. \\
\end{array}
$
...en dan ben je er wel. Het punt $P_1$ heeft als coördinaten $(0,1\frac{1}{2})$.
Zoiets moet het zijn. Zou het daarmee lukken?
WvR
13-4-2015
#75386 - Krommen - Student hbo