Hoe los je 1-sin3(x-1) = 0 exact op?Meilina
6-4-2015
Dat gaat zo:
$
\eqalign{
& 1 - \sin (3(x - 1)) = 0 \cr
& - \sin (3(x - 1)) = - 1 \cr
& \sin (3(x - 1)) = 1 \cr
& 3(x - 1) = \frac{1}
{2}\pi + k \cdot 2\pi \cr
& x - 1 = \frac{1}
{6}\pi + k \cdot \frac{2}
{3}\pi \cr
& x = 1 + \frac{1}
{6}\pi + k \cdot \frac{2}
{3}\pi \cr}
$
Alle stappen begrepen? Anders vragen!
- Lees je ook de spelregels een keer?
WvR
6-4-2015
#75344 - Goniometrie - Leerling bovenbouw havo-vwo