De opgave luidt:
a/(a-b)(a-c)+b/(b-a)(b-c)+c/(c-a)(c-b)= 0
Ik krijg de breuk niet onder één noemer.
De bedoeling is dat de uitkomst 0 wordt en dat de teller daarom (na vereenvoudiging 0 moet zijn.
De vraag is dus: hoe bepaal ik van deze noemers het KGV zodat ik de breuk kan vereenvoudigen?
Wat ik probeer, het lukt me niet.
Gaarne uw hulp.Fons Vendrik
16-3-2015
Dat is wel bijzonder:
$
\eqalign{
& \frac{a}
{{(a - b)(a - c)}} + \frac{b}
{{(b - a)(b - c)}} + \frac{c}
{{(c - a)(c - b)}} = \cr
& \frac{a}
{{(a - b)(a - c)}} - \frac{b}
{{(a - b)(b - c)}} + \frac{c}
{{(a - c)(b - c)}} = \cr
& \frac{{a(b - c)}}
{{(a - b)(b - c)(a - c)}} - \frac{{b(a - c)}}
{{(a - b)(b - c)(a - c)}} + \frac{{c(a - b)}}
{{(a - b)(a - c)(b - c)}} = \cr
& \frac{{a(b - c) - b(a - c) + c(a - b)}}
{{(a - b)(b - c)(a - c)}} = \cr
& \frac{{ab - ac - ab + bc + ac - bc}}
{{(a - b)(b - c)(a - c)}} = \cr
& \frac{0}
{{(a - b)(b - c)(a - c)}} = 0 \cr}
$
Het linker lid is altijd nul.
WvR
16-3-2015
#75174 - Formules - Ouder