Als a+b een drievoud is, dan snap ik het. Maar anders stel je z een deler van a? Waarom? Een deler van a+b hoeft toch geen deler van a te zijn? b.v. 3 is een deler van 7+5?OPA
5-3-2015
Hoi opa,
Als (a+b) een 3 voud is dan is duidelijk dat 3ab ook deelbaar is door 3 natuurlijk.
Ik zeg niet dat een deler van (a+b) een deler van a is ? waar zeg ik dat?
Nee, ik zeg stel dat z een deler van a is dan is het geen deler van (a+b).
Kortom als z een deler is van a, dan is het ook een deler van 3ab toch?
rest nog de vraag of het dan ook een deler van (a+b) kan zijn.
Welnu omdat ggd(a,b)=1 hebben ze geen gemeenschappelijke deler. Dus een deler van a is per definitie geen deler van b en dat zorgt er dus voor dat (a+b)/z altijd een breuk zal zijn. Ergo, als z een deler is van a danwel b dan is het geen deler van (a+b). Behalve als z de waarde 1 aanneemt.
Ofwel de enige mogelijke delers zijn dan 3 of 1.
Neem bijvoorbeeld maar eens (8,9) ggd (8,9)=1
2 is een deler van 8 maar niet van 17
3 is een deler van 9 maar niet van 17
Neem 14 en 15 ggd (14,15)=1
7 is een deler van 14 maar niet van 29
3 is een deler van 15 maar niet van 29
etc.
DvL
5-3-2015
#75089 - Getallen - 3de graad ASO