Beste,
Ik zit vast bij de volgende vergelijking:
3x+1 + 3x-2 - 15/3x-1 = 247/3x-2
Ik weet wel dat (x+1) log3 + (x-2) log3 - 15/(x-1)log3 = 247/ (x-2)log3 wordt, en dat je log3 moet afzonderen, maar ik weet niet goed hoe je het moet doen dankzij die breuken.
Kunt u of kunnen jullie hier een antwoord hebben aub?
Alvast bedankt.
mvgNiels Wellens
5-2-2015
Je gaat, hoop ik, toch niet vertellen dat dat zo werkt! Je beweert zoiets als:Dat is niet zo... dus vergeet dat onmiddellijk.
- Als $a+b=c$ dan $log(a)+log(b)=log(c)$
Misschien toch maar even de rekenregels voor machten en logaritmen bestuderen?
Maar dit soort vergelijkingen los je op zonder logaritme. De strategie is om alle termen te schrijven als dezelfde macht. Uiteindelijk kan je dan de vergelijking oplossen.
Voorbeeld
$
\eqalign{3^{x + 1} + 3^{x - 2} - \frac{{15}}
{{3^{x - 1} }} = \frac{{247}}
{{3^{x - 2} }}}
$
Vermenigvuldig alle termen met $
{3^{x - 2} }
$. Je krijgt dan:
$
3^{2x - 1} + 3^{2x - 4} - 5 = 247
$
Lukt het dan om de vergelijking verder op te lossen?
WvR
5-2-2015
#74893 - Vergelijkingen - 3de graad ASO