Dank je wel voor je uitleg. tot aan de deviation = 7.1 heb ik door. Wij mogen geen GR gebruiken, dus moet het zonder kunnen berekenen. Ik weet niet hoe je aan de 80 en 120 komt? en waar staat de X* voor?Sandra
30-11-2014
Het aantal keren kop bij het 200 keer gooien van een munt is binomiaal verdeeld met n=200 en p=$\frac{1}{2}$. Je schrijft dan:
X~Bin(200,$\frac{1}{2}$)
Je gaat nu deze binomiale verdeling benaderen met de normale verdeling. Daarvoor reken je de verwachtingswaarde en de standaarddeviatie uit. Ik noem die benadering $X^{*}$.
De vraag is nu wat de kans is dat de fractie kop tussen 0,4 en 0,6 lgt. Als n=200 dan moet $X^{*}$ liggen tussen 80 en 120.
Ik heb daarvoor $P(X^{*}\lt 80)$ en $P(X^{*}\lt 120)$ uitgerekend. Dat doe jij dan met je Table A. Bereken daarvoor de z-scores.
$\eqalign{z_{links}=\frac{80-100}{\sqrt{50}}\approx-2,828}$
$\eqalign{z_{rechts}\frac{120-100}{\sqrt{50}}\approx2,828}$
$P(z\lt-2,828)\approx0,0023$
$P(z\lt2,828)\approx0,9976$
$(-2,828\lt z\lt2,82\approx0,9953$
Lukt het daarmee?Zie Normale Verdeling (Gaussische Verdeling) [http://www.ecoboot.nl/tudelft/presan/node25.html]
WvR
30-11-2014
#74425 - Statistiek - Student universiteit