Hallo, ik zit al een paar dagen op deze oefening van wiskunde te kijken : y=3√(x3-1). Hiervan moet ik de afgeleide bereken, maar we hebben de formule van de macht geleerd. Deze kan ik hier natuurlijk op toepassen door de wortel om te zetten naar de macht 3/2 maar ik kom het gegeven resultaat niet uit. Als ik deze oefening met 2/3 probeer, lukt het ook niet.
dit is de oplossing : de afgeleide is $\to$ x2:3√(x3-1)2 . Dus in de noemer staat eerst tot de tweede macht en dan het geheel onder de derdemachtswortel.
Mijn vraag is nu, hoe kan ik tot deze oplossing komen met de gegeven formule? En gaat dit ook met een andere formule? Ik heb de oplossing wel, maar ik wil graag de bewerkingen ook zien
Groetjes en bedankt!Jasmine
4-9-2014
Hoi Jasmine,
Dit gaat onder andere met de kettingregel en wat herschrijven van de dingen.
\[
\begin{array}{l}
y = \sqrt[3]{{(x^3 - 1)}} \\
y = (x^3 - 1)^{\frac{1}{3}} \\
{\rm{stel (}}x^3 - 1) = u \\
y = u^{\frac{1}{3}} \\
y' = \frac{1}{3}u^{\frac{{ - 2}}{3}} .u'{\rm{ ( kettingregel)}} \\
{\rm{u'}} = 3x^2 \\
y' = \frac{1}{3}{\rm{(}}x^3 - 1)^{\frac{{ - 2}}{3}} .3x^2 = {\rm{(}}x^3 - 1)^{\frac{{ - 2}}{3}} .x^2 = x^2 .\frac{1}{{{\rm{(}}x^3 - 1)^{\frac{2}{3}} }} \\
y' = \frac{{x^2 }}{{\sqrt[3]{{{\rm{(}}x^3 - 1)^2 }}}} \\
\end{array}
\]
mvg DvL
DvL
4-9-2014
#73803 - Formules - 3de graad ASO