Welke regels worden hier dan bij gebruikt?
n=c·kd
log(n) =log(c)+d·log(k)
d=(log(n)-log(c))/log(k)
d=log(n)/log(k)-log(c)/log(k)Vincent
3-7-2014
De uitwerking iets verder uitgebreid wordt:
$
\begin{array}{l}
n = c \cdot k^d \\
\log (n) = \log (c \cdot k^d ) \\
\log (n) = \log (c) + \log (k^d ) \\
\log (n) = \log (c) + d \cdot \log (k) \\
\log (c) + d \cdot \log (k) = \log (n) \\
d \cdot \log (k) = \log (n) - \log (c) \\
d = \frac{{\log (n) - \log (c)}}{{\log (k)}} \\
d = \frac{{\log (n)}}{{\log (k)}} - \frac{{\log (c)}}{{\log (k)}} \\
\end{array}
$
Rekenrekels voor logaritme, maar ook de 'normale' rekenregels voor optellen, aftrekken, vermenigvuldigen en delen.
WvR
3-7-2014
#73520 - Logaritmen - Leerling bovenbouw havo-vwo