WisFaq!

\require{AMSmath} geprint op vrijdag 22 november 2024

Differentiëren van een exponentiële functie

A(t) = 7 * 1,4^t
A'(t) = 7t * 1,4^(t-1)

Dit tweede blijkt niet waar te zijn...
Maar er geldt toch dat:
f(x) = x^n en f'(x) = n*x^(n-1)

Waarom klopt dit niet?

bvd

Bart Kleyngeld
5-2-2003

Antwoord

Hallo Bart,

Dat klopt inderdaad niet, want je mag die formule enkel gebruiken als n een constante is. Hier is de exponent een variabele, maar geen nood, daarvoor bestaat ook een formule:
f=a^t dan f'=ln(a)*a^t. Als je dus voor a de waarde e kiest, komt dit uit op de bekende formule (e^t)' = e^t. En voor je voorbeeld: A'= 7*ln(1.4)*(1.4^t)

Groeten,

Christophe
5-2-2003


© 2001-2024 WisFaq
WisFaq - de digitale vraagbaak voor het wiskunde onderwijs - http://www.wisfaq.nl

#7253 - Differentiëren - Leerling bovenbouw havo-vwo