Ik geraak er niet, m'n eerste reflex was te schrijven als
1/q! · (n!/ n-q-(p-q)!(p-q)!)
maar dan rij ik mezelf vast...Maarte
16-2-2014
Vereenvoudigen geeft:
$
\left( {\begin{array}{*{20}c}
n \\
p \\
\end{array}} \right) \cdot \left( {\begin{array}{*{20}c}
p \\
q \\
\end{array}} \right)
$=$
\Large\frac{{n!}}{{(n - p)! \cdot p!}} \cdot \frac{{p!}}{{\left( {p - q} \right)! \cdot q!}} = \frac{{n!}}{{(n - p)! \cdot \left( {p - q} \right)! \cdot q!}}\,
$
$
\left( {\begin{array}{*{20}c}
n \\
q \\
\end{array}} \right) \cdot \left( {\begin{array}{*{20}c}
{n - q} \\
{p - q} \\
\end{array}} \right)
$=$
\Large\frac{{n!}}{{(n - q)! \cdot q!}} \cdot \frac{{(n - q)!}}{{(n - q - (p - q)! \cdot (p - q)!}} = \frac{{n!}}{{q! \cdot (n - p)! \cdot (p - q)!}}
$
Eh..?
WvR
16-2-2014
#72309 - Bewijzen - 3de graad ASO