WisFaq!

\require{AMSmath} geprint op vrijdag 22 november 2024

Binomium van Newton

Beste wisfaq,

Voor wiskunde zijn wij nu bezig met een zeer moeilijk hoofdstuk. voor de volgende vraag moeten we het binomium van Newton toepassen, maar ik heb werkelijk geen idee hoe ik deze oefening moet oplossen:

Bepaal n$\in$N zodanig dat de termen met x2 en x4 gelijke coëfficienten hebben in (6x-√6)n.

Alvast bedankt

Philippe
12-2-2014

Antwoord

Beste Philippe,

In dit geval is het denk ik gewoon het handigste om gewoon te proberen.
Snel is ontdekt dat n=4

Mocht je het echter met de eigenschappen van het binomium willen doen perse dan is onderstaande een methode. Die voor moeilijkere gevallen wellicht meer uitkomst kan bieden.

$$
\begin{array}{l}
(6x)^2 .( - \sqrt 6 )^{n - 2} .\left( {\begin{array}{*{20}c}
{n!} \\
{2!(n - 2)!} \\
\end{array}} \right) = x^2 ( - \sqrt 6 )^{n + 2} \left( {\begin{array}{*{20}c}
{n!} \\
{2!(n - 2)!} \\
\end{array}} \right) \\
(6x)^4 ( - \sqrt 6 )^{n - 4} .\left( {\begin{array}{*{20}c}
{n!} \\
{4!(n - 4)!} \\
\end{array}} \right) = x^4 ( - \sqrt 6 )^{n + 4} \left( {\begin{array}{*{20}c}
{n!} \\
{4!(n - 4)!} \\
\end{array}} \right) \\
\left( {\begin{array}{*{20}c}
{n!} \\
{2!(n - 2)!} \\
\end{array}} \right)( - \sqrt 6 )^{n + 2} = ( - \sqrt 6 )^{n + 4} \left( {\begin{array}{*{20}c}
{n!} \\
{4!(n - 4)!} \\
\end{array}} \right) \\
\left( {\begin{array}{*{20}c}
{n!} \\
{2!(n - 2)!} \\
\end{array}} \right) = 6\left( {\begin{array}{*{20}c}
{n!} \\
{4!(n - 4)!} \\
\end{array}} \right) \\
4!(n - 4)! = 6.2!(n - 2)! \\
24.(n - 4)! = 12(n - 2)! \\
2 = \frac{{(n - 2)!}}{{(n - 4)!}} \Rightarrow 2 = (n - 2)(n - 3) \Rightarrow n = 4 \\
\\
\\
\end{array}
$$

mvg

DvL
12-2-2014


© 2001-2024 WisFaq
WisFaq - de digitale vraagbaak voor het wiskunde onderwijs - http://www.wisfaq.nl

#72266 - Formules - 3de graad ASO