Een chauffeur met een tourbus heeft 20 zitplaatsen. Hij weet dat niet iedereen komt opdagen. Daarom verkoopt hij 21 kaartjes. De kans dat een toerist niet opdaagt is 2%.
Een kaartje kost 50 euro. Als een toerist komt, maar er zijn geen zitplaatsen, dan moet de chauffeur 100 euro betalen (kaartje+ 50 euro boete aan de toerist).
Wat is de verwachte winst? (antwoord boek zegt: 984,58 euro). Volgens heeft dit met standaard deviatie en variantie te maken, maar ik weet niet zeker...
Alvast bedankt!!Martin Barend
19-12-2013
Hallo Martin,
De chauffeur verkoopt 21 kaartjes à 50 Euro, de inkomsten zijn 1050 Euro.
Hierna zijn slechts twee mogelijke situaties van belang:De kans op situatie 1 is 0,9821, dit noem ik P(1). De kans op situatie 2 is dan automatisch: P(2) = 1-0,9821.
- Iedereen komt opdagen. De chauffeur moet 100 Euro terugbetalen, de winst wordt dan 950 Euro;
- Niet iedereen komt opdagen. De winst blijft 1050 Euro.
De verwachte winst is dan P(1)·950 + P(2)·1050.
GHvD
19-12-2013
#71698 - Statistiek - Student hbo