WisFaq!

\require{AMSmath} geprint op zaterdag 23 november 2024

Stelsel lineaire congruenties

Voor het oplossen van stelsels lineaire congruenties, moet de Chinese reststelling gebruikt worden. Hiervoor moeten de m'en (dus mod...) onderling ondeelbaar zijn. Wat als ze nu wel onderling deelbaar zijn zoals onderstaand voorbeeld?

5x = 13 (mod 17)
-2x = 3 (mod 17)
8x = 12 (mod 14)

Alvast bedankt!

Dries
19-12-2013

Antwoord

$
\begin{array}{l}
5x \equiv 13\bmod (17) \\
7.5x \equiv 7.13\bmod (17) \\
x \equiv 6\bmod (17) \\
- 2x \equiv 3\bmod (17) \\
- 2. - 9x \equiv - 9.3\bmod (17) \\
x \equiv 7\bmod (17) \\
\end{array}
$

Dat is tegenspraak! Dus het stelsel kent geen oplossing(en)

DvL
19-12-2013


© 2001-2024 WisFaq
WisFaq - de digitale vraagbaak voor het wiskunde onderwijs - http://www.wisfaq.nl

#71696 - Verzamelingen - Student universiteit België