WisFaq!

\require{AMSmath} geprint op zondag 24 november 2024

Re: Re: Riemann som

Bedankt voor de reacties, eigenlijk bedoelde ik dit:
Er geldt h·f(a)$\leq$F(a+h)$\leq$h·f(a+h)
Hierbij is h·f(a) de ondersom, F(a+h) de exacte oppervlakte en h·f(a+h) de bovensom. Waarom is het dan zo dat als h naar nul nadert de bovensom en ondersom niet meer veel verschillen van de exacte oppervlakte F(a+h)?

Bij voorbaat bedankt

Alex
3-12-2013

Antwoord

Hoi Alex , dat heb ik eigenlijk net gezegd. Als h naar 0 nadert, ( h is de breedte van het rechthoekje), dan heb je dus steeds meer rechthoekjes. De ondersom en de bovensom worden gelijk bij oneindig veel rechthoekjes ( dat is dus als h nadert naar 0) en dat betekent dat ze naar de exacte waarde gaan.

Probeer het echt eens te tekenen, je ziet dat bij hoe meer rechthoekjes de ondersom en bovensom elkaar naderen en dus de exacte waarde naderen. Bij de ondersom zie je steeds minder "wit" gebied onder de grafiek en bij de bovensom zie je steeds minder "gekleurd" gebied boven de grafiek. Als h nadert naar 0 dan neemt het aantal rechthoekjes oneindig toe omdat h de breedte is per rechthoek.

mvg DvL

DvL
3-12-2013


© 2001-2024 WisFaq
WisFaq - de digitale vraagbaak voor het wiskunde onderwijs - http://www.wisfaq.nl

#71566 - Integreren - Leerling bovenbouw havo-vwo