WisFaq!

\require{AMSmath} geprint op vrijdag 22 november 2024

Bewijs met axioma`s voor gehele getallen

Met veel interesse ben ik de colleges
wiskundige structuren op collegerama van de TU delft
aan het volgen.
Een van de onderwerpen is het m.b.v. axioma's bewijzen van stellingen over gehele getallen. De meeste opgaven kan ik maken maar zodra er vermenigvuldigd wordt met een negatief element weet ik niet wat te doen. Hieronder een voorbeeld.

Bewijs direct uit de axioma's voor gehele getallen met a in Z: -(-a)=a.

Als ik alles wat ik ooit geleerd heb vergeet en alleen de
axioma's gebruik kom ik er in het algemeen niet uit wat de
uitkomst van een vermenigvuldiging van twee negatieve getallen is. Kan iemand mij een zetje in de goede richting geven?

bij voorbaat dank.

Pim Dekker
28-11-2013

Antwoord

Dit gaat nog niet over vermenigvuldiging maar over de optelling: $-(-a)$ is de additieve invers van $-a$ en je moet bewijzen dat dat $a$ is. En dat betekent, per definitie dat $(-a)+a=0$ moet gelden.

kphart
28-11-2013


© 2001-2024 WisFaq
WisFaq - de digitale vraagbaak voor het wiskunde onderwijs - http://www.wisfaq.nl

#71532 - Bewijzen - Iets anders