WisFaq!

\require{AMSmath} geprint op zondag 24 november 2024

Bijzondere lineaire vergelijkingen

De vergelijking 3x+1=3(x+2)-5 is een bijzondere lineaire vergelijking, alleen ik kom op 0 uit terwijl het boek zegt dat het oneindig veel oplossingen heeft. Hoe kan dat?

Anna
8-9-2013

Antwoord

Hoi Annamaja,

Tip: Plot beide functies eens ( dus linkerlid en rechterlid).

3(x+2)-5=3x+6-5=3x+1 En aan de linkerkant staat 3x+1. Kortom als je het linkerlid en het rechterlid als aparte functies ziet, dan zie je ook dat ze hetzelfde zijn. Ze zijn hetzelfde voor elke waarde van x. Kortom oneindig veel oplossingen.

Jij komt waarschijnlijk niet uit op x=0 , maar eerder op 0=0 en dit laatste is natuurlijk waar. 0 is immers inderdaad 0. Probeer eens of je uit kunt komen op x=x Dit betekent dat voor elke waarde van x de linker en rechterkant gelijk zijn (oneindig veel dus).

Mvg DvL

DvL
8-9-2013


© 2001-2024 WisFaq
WisFaq - de digitale vraagbaak voor het wiskunde onderwijs - http://www.wisfaq.nl

#70825 - Vergelijkingen - Leerling onderbouw vmbo-havo-vwo