hallo,
Ik heb hier een opdracht waar ik niet helemaal uit kom. de opdracht luidt: Toon aan dat er geen gehele getallen m en n bestaan waarvoor geldt: m2=n2-6.
Nu heb ik hem al zo opgeschreven (ik weet niet of dit goed is) :
Ga er vanuit dat er wel gehele getallen bestaan voor m en n dan:
m2-n2=-6
(m-n)(m+n)= -6
Nu mijn vraag, hoe moet ik nu verder en wat schrijf ik precies op?
Alvast bedanktjan
23-6-2013
Er zijn maar enkele combinaties van gehele getallen om aan -6 te komen, namelijk 6x-1 en 2x-3 enz.
Als je bijv. die laatste combinatie bekijkt, dan zou je m - n = 2 en m + n = 3 hebben, maar dit lukt niet met hele getallen (los het stelsel maar op).
Ook kan het volgende.
Als je de mogelijke combinaties om -6 te krijgen bekijkt, dan zie je dat het steeds een even en een oneven combinatie is, zoals bijv. 2 x -3 of
-1 x 6.
Stel eens dat n even is. Dan is n2 het ook en dus n2 - 6 ook en dus m2 ook, dus m ook.
Maar we zagen dat het een even plus oneven combinatie moet zijn.
Idem als je uitgaat van een oneven n.
MBL
23-6-2013
#70548 - Bewijzen - Student hbo