WisFaq!

\require{AMSmath} geprint op vrijdag 22 november 2024

Maximum minimumprobleem

Welke gelijkbenige driehoek met omtrek 25 cm heeft de grootste oppervlakte?
Ik maakte een schets waarbij ik de driehoek in 2 kleinere driehoeken verdeelde langs de hoogte: dus de basis werd in 2 verdeeld.
dus oppervlakte = 2b·h/2 = b·h
en omtrek: 25 = 2b + 2 √(b2+h2) -$\to$ door pythagoras
Als ik de ene formule in de andere invul kom ik uit dat
h = √((625-100b)/4).
Hoe moet ik verder? (met afgeleide)

Enya
26-5-2013

Antwoord

Vul de uitdrukking van 'h' in 'b' in de formule in voor de oppervlakte:

$
O = b \cdot \sqrt {\frac{{625 - 100b}}{4}}
$

Dat laat zich herleiden tot:

$
O = 2\frac{1}{2}b\sqrt {25 - 4b}
$

Bepaal de afgeleide. Denk aan de productregel en denk aan de kettingregel. Stel de afgeleide nul. Los de vergelijking op en... je vindt een mogelijk kandidaat voor de maximale oppervlakte.

Zou dat lukken?

WvR
26-5-2013


© 2001-2024 WisFaq
WisFaq - de digitale vraagbaak voor het wiskunde onderwijs - http://www.wisfaq.nl

#70368 - Functies en grafieken - 3de graad ASO