Je kunt toch moeilijk het snijpunt gaan zoeken van die twee vergelijkingen, want je kent ook de rico niet van de raaklijn en dan heb je twee onbekenden in eenzelfde gelijkheid.
Öx=m(x+1)sara
3-5-2013
Toch wel...
$
\begin{array}{l}
\sqrt x = m(x + 1) \\
x = m^2 (x + 1)^2 \\
x = m^2 \left( {x^2 + 2x + 1} \right) \\
x = m^2 x^2 + 2m^2 x + m^2 \\
m^2 x^2 + \left( {2m^2 - 1} \right)x + m^2 = 0 \\
D = \left( {2m^2 - 1} \right)^2 - 4 \cdot m^2 \cdot m^2 = 0 \\
4m^4 - 4m^2 + 1 - 4m^4 = 0 \\
- 4m^2 + 1 = 0 \\
4m^2 = 1 \\
m^2 = \frac{1}{4} \\
m = - \frac{1}{2}(v.n.) \vee m = \frac{1}{2} \\
Raaklijn:y = \frac{1}{2}\left( {x + 1} \right) \\
\end{array}
$
De discriminant is nul als er precies 1 oplossing is.
WvR
3-5-2013
#70213 - Analytische meetkunde - 3de graad ASO