Bedankt voor de snelle reactie. Maar het wortel teken en het kwadraat heffen elkaar toch meteen op? En met bijv. a2=9 en dan √a2=√9, waarom zie ik soms absolute waarde strepen om de a? abs.a = 9.martin
5-3-2013
De vergelijking a2 = 9 heeft twee oplossingen, namelijk a = √(9) = 3 en a = -√(9) = -3.
Vaak zie je, wat slordig maar reuze handig, a = ±3.
Per definitie geldt: √(a) = b betekent a = b2 waarbij b $\ge$ 0.
Omdat b2 nooit negatief kan zijn, is a nu automatisch óók niet-negatief.
Hier staat in feite dat er onder een wortelteken geen negatief getal mag staan.
Een en ander betekent dat bijv. √(9) = 3 en niet -3.
Dit staat los van het feit dat de kwadraten van 3 en -3 hetzelfde opleveren.
Kijk nu eens bijv. naar √(-3)2 ofwel √(9). Volgens de zojuist gegeven afspraak is het enig juiste antwoord hierop dus 3.
Als je uitgaat van je opmerking 'de wortel neutraliseert het kwadraat', dan zou je -3 krijgen, in strijd met de afspraak.
Maar als je als oplossing |-3| schrijft, dán klopt het weer wel!
Met √(32) = √(9) = 3 kun je hetzelfde doen, want |3| = 3.
Zo geldt dus in het algemeen dat √(a2) = |a|, óók als a negatief is.
MBL
5-3-2013
#69821 - Algebra - Ouder