WisFaq!

\require{AMSmath} geprint op maandag 25 november 2024

Lineaire deelruimten, dimensies en basis

Hallo, Ik moet de opdracht 'geef voor de volgende lineaire deelruimte aan wat de dimensie is, en geef een basis' oplossen. Nou kom ik er met de volgende deelruimte niet uit:

<(2,0,1),(-1,1,-1),(1,3,-1)>
Ik heb geprobeerd dit via echelonvorm op te lossen, en kom dan uit op ß=-3g. Maar als ik dan de derde vector met -3 vermenigvuldig kom ik niet op de 2e vector uit. Wat doe ik fout?

Mirjam Dijksterhuis
14-12-2012

Antwoord

Duidelijk is dat dit drietal vectoren geen veelvoud van elkaar zijn, dus niet op één lijn liggen.
Zijn ze onafhankelijk?
Wanneer je a(2,0,1) + b(-1,1,-1) + c(1,3,-1) = (0,0,0) wilt oplossen, dan vind je al snel dat
b = -3c en a = -2c.
Het drietal a = 2, b = 3 en c -1 laat zien dat het drietal niet onafhankelijk is (anders zou je alleen a = b = c = 0 hebben gevonden).

De 3 vectoren liggen dan in één vlak en twee vectoren moet je dus kunnen combineren om de derde te krijgen.
Ga na dat 2(2,0,1) + 3(-1,1,-1) = (1,3,-1)

MBL
14-12-2012


© 2001-2024 WisFaq
WisFaq - de digitale vraagbaak voor het wiskunde onderwijs - http://www.wisfaq.nl

#69258 - Lineaire algebra - Student universiteit