WisFaq!

\require{AMSmath} geprint op zaterdag 23 november 2024

Re: Stelsel

Ik kan de eerste vergelijking maal sinalfa doen en de tweede maal cosalfa.
Dan kom ik het volgende uit:

Sinalfa . 23 = 3cosalfa.sinalfa + 20cosbeta.sinalfa

0 = 3 sinalfa . cosalfa + 20 cosalfa . sinbeta

Dan kan ik in mijn eerste vergelijking 3cosalfa.sinalfa vervangen door -20 cosalfa . sinbeta.

En dan krijg ik in mijn eerste vergelijking:
Sinalfa . 23 = - 20 cosalfa.sinbeta + 20cosbeta.sinalfa

En weet ik het weer niet meer...

Hannah
5-11-2012

Antwoord

Het lijkt me niet zo'n goed idee om de vergelijkingen te gaan vermenigvuldigen met iets waar de variabele alpha nog in zit.
Maar laten we eens kijken, zoals je hoop ik weet geldt: -1cos(t)1
Dus -33cos(a)3 en -2020cos(b)20.
Wil uit 3cos(a)+20cos(b) 23 komen dan MOET cos(a)=1 en cos(b)=1.
Waaruit dan automatisch volgt:sin(a)=0 en sin(b)=0.
Gelukkig voldoet dit tweetal aan 0=3sin(a)+20sin(b).
Conclusie:
cos(a)=1 en cos(b)=1 en sin(a)=0 en sin(b)=0.
Dus a=0+2kp en b=0+2kp

hk
5-11-2012


© 2001-2024 WisFaq
WisFaq - de digitale vraagbaak voor het wiskunde onderwijs - http://www.wisfaq.nl

#68901 - Goniometrie - Student universiteit België