WisFaq!

\require{AMSmath} geprint op vrijdag 22 november 2024

Paraboloide tekenen

Ik wil werken met de vergelijking 3z=x2+y2 en probeer een plaatje te tekenen.
Nu weet ik dat z=x2+y2 een omhooggerichte paraboloide is. En vraag me af wat de factor 3 voor z met het plaatje doet.
Een medestudent suggereert dat de paraboloide nu op z'n kant komt te liggen; ik denk eerder dat de horizontale doorsneden geen cirkels maar ellipsen zijn.
Kortom: we komen niet uit het plaatje.
Kunt u ons uitleggen hoe het plaatje er uit komt te zien en waarom zo?

Alvast bedankt!

Floor

Floor
20-8-2012

Antwoord

je kunt 3z=x2+y2 schrijven als z=(x2+y2)/3.
Dus ieder punt van 3z=x2+y2 ligt op 1/3 van de hoogte van het overeenkomstige punt van z=x2+y2.
Dus de grafiek van 3z=x2+y2 is ook een omhooggerichte paraboloide.

hk
20-8-2012


© 2001-2024 WisFaq
WisFaq - de digitale vraagbaak voor het wiskunde onderwijs - http://www.wisfaq.nl

#68226 - Functies en grafieken - Student hbo