hallo, ik zit met de volgende vraagstuk: bepaal bij de volgende tijdsinvariante differentiaalvergelijking het evenwicht(en) en de aard hiervan: y'(t)= -3·y2(t)+y(t)/2
het evenwicht bepalen denk ik te kunnen:
evenwicht bij $\Rightarrow$ y'(t)=0
0=-3y2+y/2
y=y·(-3y+0.5)
y=0 en (-3y+0.5)=0 levert (y=0)&(y=1/6)
Dus nu heb ik 2 evenwichten, maar snap ik niet hoe ik kan bepalen of het stabiel is of instabiel. In de theorie staat dat je deze evenwichtspunten moet invullen bij y'(t)=0 en dan moet kijken of het groter(Instabiel) of kleiner(stabiel) is dan 0. Als ik dit doe y'(0)=0 en y'(1/6)=0. Ik krijg dus 2x0. Wat voor soort evenwicht is dit dan?
Alvast vriendelijk bedankt!robin
7-8-2012
Lees de theorie nog een keer goed door want er staat (vast) niet dat je de $y'(t)$ nemen want dan weet je van te voren al dat er nul uit komt.
Er staat ongetwijfeld dat je de rechterkant, $-3y^2+y/2$ dus, naar $y$ moet differentiëren en in dat resultaat de gevonden $y$-waarden in moet vullen.
kphart
15-8-2012
#68118 - Differentiaalvergelijking - Student universiteit