De volgende opgave is lastig:
a2=(e2·d2)/(1-e2)2
b2=(e2·d2)/(1-e2)
e$<$1
Bereken c2=a2-b2
herman
29-7-2012
Dat lijkt me vooral een kwestie van gelijknamig maken:
$
\begin{array}{l}
c^2 = \Large\frac{{e^2 d^2 }}{{\left( {1 - e^2 } \right)^2 }} - \frac{{e^2 d^2 }}{{1 - e^2 }} \\
c^2 = \Large\frac{{e^2 d^2 }}{{\left( {1 - e^2 } \right)^2 }} - \frac{{e^2 d^2 }}{{1 - e^2 }} \cdot \frac{{1 - e^2 }}{{1 - e^2 }} \\
c^2 = \Large\frac{{e^2 d^2 }}{{\left( {1 - e^2 } \right)^2 }} - \frac{{e^2 d^2 \left( {1 - e^2 } \right)}}{{\left( {1 - e^2 } \right)^2 }} \\
c^2 = \Large\frac{{e^2 d^2 }}{{\left( {1 - e^2 } \right)^2 }} - \frac{{e^2 d^2 - e^4 d^2 }}{{\left( {1 - e^2 } \right)^2 }} \\
c^2 = \Large\frac{{e^2 d^2 - e^2 d^2 + e^4 d^2 }}{{\left( {1 - e^2 } \right)^2 }} \\
c^2 = \Large\frac{{e^4 d^2 }}{{\left( {1 - e^2 } \right)^2 }} \\
\end{array}
$
Valt mee toch?
WvR
29-7-2012
#68057 - Formules - Leerling bovenbouw havo-vwo