WisFaq!

\require{AMSmath} geprint op zondag 24 november 2024

Parameters bepalen veelterm met gehele coëfficiënten

Ik ben volgende oefening tegengekomen in mijn boek en ik weet dat ik het me gelukt is deze op te lossen als voorbereiding voor men toets, maar nu ik het moet leren voor het examen wil het maar niet meer lukken. Ik had de oefening natuurlijk op kladpapier gemaakt en nu vind ik dit niet meer terug

Gegeven: de veelterm met gehele coëfficiënten f(z)=z3+pz2+qz+5
Bepaal p en q als je weet dat f(z) een zuiver imaginair nulpunt heeft. Ontbind f(z) in factoren.
Ik heb al geprobeerd bi en -bi in te vullen, maar dan heb je 3 variabelen en slechts 2 voorwaarden. De oplossingen zijn p=1 en q=5 of p=5 en q=1. Wanneer ik enkel i invul dan kom ik q=1 en p=5 wel uit, maar dan gok ik eigenlijk een nulpunt en dan kom ik de andere oplossing met p=1 en q=5 niet uit. Iemand ideeën? Alvast bedankt!

tima
16-6-2012

Antwoord

Je kunt f(z) schrijven als (z+a)(z2+b) met b positief.
Uitwerken van de haakjes geeft z3+az2+bz+ab
Nu moet ab=5 zijn.
Dus a=1 en b=5 of a=5 en b=1.
Hieruit volgen dan p en q.

hk
16-6-2012


© 2001-2024 WisFaq
WisFaq - de digitale vraagbaak voor het wiskunde onderwijs - http://www.wisfaq.nl

#67833 - Complexegetallen - 3de graad ASO