WisFaq!

\require{AMSmath} geprint op vrijdag 22 november 2024

Knikkers

De 6 rode, 4 gele en 2 blauwe knikkers ziiten in een vaas.
Mieke pakt aselect 4 knikkers met terugleggen.

Wat is voor Mieke de kans op het trekken van 2 rode en 1 gele knikker?

Ik begrijp dat je de bereking 6/12·6/12·4/12·2/12 moet maken. Ook weet ik dat Mieke niet persé in de knikkers in de volgende volgorde rode, rode, gele en blauwe hoeft te pakken. Dus er zijn verschillende mogelijkheden.
Op het antwoordenformulier staat dat je voor bovenstaande berekening 4! boven twee moet zetten. Ik begrijp echt niet waar je juist voor 4! boven 2 moet kiezen.

Ik hoop dat jullie me dat kunnen uitleggen!
Alvast bedankt!

Groetjes Jacqueline

Jacqueline
19-1-2003

Antwoord

Jacqueline eh... ik bedoel Mieke pakt 4 knikkers zonder terugleggen. Gevraagd de kans op 2 rood en 1 geel. Je weet al hoe je de kans op een bepaalde volgorde moet berekenen, dus vragen we ons af: hoeveel volgordes zijn er!?

Laten we eens kijken: er zijn vier bakjes en vier letters RRGB hoeveel 'woorden' kan je maken. Er zijn 4! volgordes... echter dan tel je R1R2GB en R2R1GB als twee, terwijl het er maar één is! Dat geldt trouwens voor alle volgordes dus je telt alles dubbel! Dus 4! delen door 2.

Zie Het bakjesmodel in voorbeelden [http://www.wiswijzer.nl/pagina.asp?nummer=431]

WvR
19-1-2003


© 2001-2024 WisFaq
WisFaq - de digitale vraagbaak voor het wiskunde onderwijs - http://www.wisfaq.nl

#6783 - Kansrekenen - Student hbo