WisFaq!

\require{AMSmath} geprint op vrijdag 22 november 2024

Modulus z

Graag wil ik het aandacht voor het volgende,

de modulus van z kan worden omschreven als een cirkel.

bv modulus z = 2 is een cirkel met straal 2 gelegen in punt (0,0)

is het hier omdat de vorm van modulus z geschreven wordt als = Ö((x)2+(y)2) en dit de vergelijking is van een cirkel automatisch de vorm van een cirkel krijgt?

Mvg

Maurice

Maurice
19-5-2012

Antwoord

Beste Maurice,

Je kan dat inderdaad aan de hand van de formule voor de modulus zien (je krijgt de standaardvergelijking in cartesische coördinaten van een cirkel met middelpunt in de oorsprong), maar de meetkundige betekenis van de modulus maakt het onmiddellijk duidelijk!

De modulus is immers de afstand van het punt (complex getal) in het vlak (complexe vlak) tot de oorsprong en een vergelijking van de vorm "modulus = constante" drukt dus uit dat een punt op een bepaalde, vaste afstand van de oorsprong ligt.
En wat is de verzameling van punten die allen op een gelijke afstand tot vast een punt (hier de oorsprong) liggen? Precies een cirkel met als straal die constante/afstand natuurlijk!

mvg,
Tom

td
19-5-2012


© 2001-2024 WisFaq
WisFaq - de digitale vraagbaak voor het wiskunde onderwijs - http://www.wisfaq.nl

#67619 - Complexegetallen - Student universiteit