Ik zit met de volgende limiet waar ik niet uit kom:
lim [(1/(x+h)) - 1/x] / h
h-0
Kunnen jullie mij hiermee helpen? Bedankt!Kees
19-3-2012
't Is vooral een kwestie van gelijknamig maken:
$
\Large
\begin{array}{l}
\mathop {\lim }\limits_{h \to 0} \frac{{\frac{1}{{x + h}} - \frac{1}{x}}}{h} = \\
\mathop {\lim }\limits_{h \to 0} \frac{{\frac{x}{{x\left( {x + h} \right)}} - \frac{{x + h}}{{x\left( {x + h} \right)}}}}{h} = \\
\mathop {\lim }\limits_{h \to 0} \frac{{\frac{{x - x - h}}{{x\left( {x + h} \right)}}}}{h} = \\
\mathop {\lim }\limits_{h \to 0} \frac{{\frac{{ - h}}{{x\left( {x + h} \right)}}}}{h} = \\
\mathop {\lim }\limits_{h \to 0} - \frac{1}{{x(x + h)}} = \\
- \frac{1}{{x^2 }} \\
\end{array}
$
Helpt dat?
WvR
20-3-2012
#67193 - Limieten - Student hbo