Oké! Ik denk dat ik het nu snap!
Dus:
Te bewijzen:
A=PQB
CLK=CKL (gelijkbenig)
PQB=CQL (overstaande hoeken)
cQL=180-QCL+CLQ
= 180-A
CQL=180-BAC
& Bij de eerste vraag had ik het volgende:
trek een lijn van B naar L.
BAC + BLC = 180graden. en BLC + CBL + BCL = 180graden ==
BAC= CBL + BCL
BCL= QCL
CBL = KLC (constante hoek)
KLC= QLC == BAC=QCL + QLC
Thom
21-2-2012
Je eerste stukje is correct maar in de vierde regel moet je haakjes ztten om de de hoeken QCL en CLQ.
Bij het tweede deel zoek je het te ver.
ÐA staat op boog BLC.
Boog BL is de boog waar ÐC op staat.
Boog LC is de boog die bij ÐK hoort, maar ÐK = ÐL.
Dus: ÐQCL + ÐCLK = ÐQCL + ÐCKL = 1/2(BoogBL + BoogLC) =
1/2Boog(BLC) = ÐA en daarmee volgt wat je bewijzen wilde.
Je hoeft dus geen extra lijnstukken erbij te halen.
MBL
21-2-2012
#66973 - Vlakkemeetkunde - Leerling bovenbouw havo-vwo