WisFaq!

\require{AMSmath} geprint op zondag 24 november 2024

Arctangens omrekenen naar pi

Hallo,

Even een kleine vraag waar ik tegen aan loop.
Ik wil een complex getal omrekenen naar zijn pool coordinaten.
waarbij r = $\sqrt{x}$2+$\sqrt{y}$2
en $\theta$is Arg z = arctangens y/z

Wanneer ik de $\theta$ bereken dient deze om te worden gezet in $\pi$ radialen b.v. Arg (-2i) = -$\pi$/2.

Hier loop ik dus vast, ik heb geen idee hoe je dit kan omzetten. Bestaat hier een techniek of een methode voor?

Groet Maurice

Maurice Kenter
15-1-2012

Antwoord

Beste Maurice,

Er staan een paar foutjes in je bericht, zo is r niet $\sqrt{x}$2+$\sqrt{y}$2 maar wel: r = $\sqrt{ }$(x2+y2). Voor het argument $\theta$ geldt x = r·cos($\theta$) en y = r·sin($\theta$); waaruit y/x = tan($\theta$) als x niet 0 is.

De formule $\theta$ = arctan(y/x) kan je dus niet altijd gebruiken; voor positieve x-waarden werkt dat wel.

In jouw voorbeeld is het complex getal z = -2i, dus z = x+iy met x = 0 en y = -2. Hiervoor kan je die formule niet gebruiken, want x = 0 en je kan niet delen door 0. Maar hier heb je ook geen formule voor nodig, teken gewoon het complex getal in het complexe vlak! Dan zie je onmiddellijk dat $\theta$ = -$\pi$/2. Dat zal altijd zo zijn voor x = 0 en y $<$ 0.

mvg,
Tom

td
15-1-2012


© 2001-2024 WisFaq
WisFaq - de digitale vraagbaak voor het wiskunde onderwijs - http://www.wisfaq.nl

#66627 - Goniometrie - Student universiteit