Ik kom een vraag tegen met een notatie die ik nog niet eerder ben tegengekomen. Hoe schrijf ik de volgende notatie om in de vorm R·e^($\phi$i)?
(-1/i)·e^(ln($\sqrt{2}$)-(3/4)$\pi$i)Piet
7-1-2012
Om te beginnen kun je (-1/i) eenvoudiger schrijven:
(-1/i)·(i/i)=-i/(i2)=-i/-1=i.
Snap je dat i=e1/2$\pi$·i?
Nu het tweede deel:
e^(ln($\sqrt{ }$(2)-(3/4)$\pi$i)=
e^(ln($\sqrt{ }$(2))·e-3/4$\pi$i=
$\sqrt{ }$(2)·e-3/4$\pi$i.
Dus we hebben:
e1/2$\pi$·i·$\sqrt{ }$(2)·e-3/4$\pi$i=
$\sqrt{ }$(2)·e1/2$\pi$·i·e-3/4$\pi$i=
$\sqrt{ }$(2)·e1/2$\pi$·i-3/4$\pi$i=
$\sqrt{ }$(2)·e-1/4$\pi$i
hk
7-1-2012
#66524 - Complexegetallen - Student universiteit