Hallo,
In deze oefening probeer ik de afgeleide te bereken, maar ik ben niet zeker of ik nog verder kan vereenvoudigen... Kan iemand mij helpen?
y = (1-x)/$\sqrt{ }$x
mijn berekening:
y' = (1-x)/x1/2
y' = (-x$\sqrt{ }$x - 1/2(x)1/2-1)/x
y' = -x$\sqrt{ }$x - 1$\sqrt{ }$x/2x/x
y' = -$\sqrt{ }$x - $\sqrt{ }$x/2x2
Kan ik eigenlijk nog iets doen?
Bedankt en met vriendelijke groetenKris
11-11-2010
Je kunt de laatste term nog vereenvoudigen. Daarna is het gebruikelijk (en handig) om alles onder één noemer te zetten. Misschien heb je hier iets aan:
$
\eqalign{
& f(x) = \frac{{1 - x}}
{{\sqrt x }} \cr
& f'(x) = \frac{{ - 1 \cdot \sqrt x - \left( {1 - x} \right) \cdot \frac{1}
{{2\sqrt x }}}}
{{\left( {\sqrt x } \right)^2 }} \cr
& f'(x) = \frac{{ - \sqrt x - \frac{1}
{{2\sqrt x }} + \frac{x}
{{2\sqrt x }}}}
{x} \cr
& f'(x) = \frac{{ - x - \frac{1}
{2} + \frac{x}
{2}}}
{{x\sqrt x }} = - \frac{{x + 1}}
{{2x\sqrt x }} \cr}
$
Soms kan het handig zijn om eerst het functievoorschrift anders te schrijven:
$
\eqalign{
& f(x) = \frac{{1 - x}}
{{\sqrt x }} = \frac{1}
{{\sqrt x }} - \sqrt x = x^{ - \frac{1}
{2}} - x^{\frac{1}
{2}} \cr
& f'(x) = - \frac{1}
{2}x^{ - 1\frac{1}
{2}} - \frac{1}
{2}x^{ - \frac{1}
{2}} \cr
& f'(x) = - \frac{1}
{{2x\sqrt x }} - \frac{1}
{{2\sqrt x }} = - \frac{{x + 1}}
{{2x\sqrt x }} \cr}
$
Maar of dat hier nu handig is...
WvR
11-11-2010
#63575 - Differentiëren - 3de graad ASO