WisFaq!

\require{AMSmath} geprint op zondag 24 november 2024

Re: Kern van een matrix

Je en nee, ik zat aan hetzelfde te denken, de antwoorden zeggen echter dat de kern (1 1 0), (-2 0 1) is en dat begrijp ik dan niet.

Pieter
27-10-2010

Antwoord

Alle vectoren van de kern behoren tot het vectorvlak met vergelijking x1-x2+2x3=0.
Dit vectorvlak (deelruimte) kan inderdaad voortgebracht worden door de richtingsvectoren (basisvectoren) (1,1,0) en (-2,0,1)
De kern kun je dan inderdaad schrijven als vct{(1,1,0),(-2,0,1)}, d.w.z. de deelruimte voortgebracht door deze twee vectoren.
Hetzelfde vectorvlak kan ook voortgebracht worden door de twee richtingsvectoren (0,2,1) en (1,3,1). De kern kan dus ook geschreven worden als vct{(0,2,1),(1,3,1}

LL
27-10-2010


© 2001-2024 WisFaq
WisFaq - de digitale vraagbaak voor het wiskunde onderwijs - http://www.wisfaq.nl

#63384 - Lineaire algebra - Iets anders