WisFaq!

\require{AMSmath} geprint op vrijdag 22 november 2024

Algemene oplossing

Ik moet de algemene oplossing van de volgende differentiaal vergelijking vinden:

y"-y=sin(x)-cos(2x)

De homogene oplossing: r2-r=0 = r(r-1)=0 = r1=0 en r2=1
Yh = C1+C2e

Nou twijfel ik als ik de particuliere oplossing wil vinden over de probeer oplossing. Ik weet dat wanneer er 1 goniometrische functie staat (bijv. sin(x)) dat je probeer oplossing een vorm moet hebben van : Asin(x)+ Bcos(x). Maar hoe zit het als ik 2 goniometrische functies heb? Hoe wordt mijn probeer oplossing dan?

B
26-6-2010

Antwoord

Schrijf de differentiaalvergelijking als:

$
y'' - y = \sin (x) + 2\sin ^2 (x) - 1
$

en probeer:

$
P(x) = a \cdot \sin ^2 x + b \cdot \sin (x) + c
$

Dan lukt het vast!

WvR
26-6-2010


© 2001-2024 WisFaq
WisFaq - de digitale vraagbaak voor het wiskunde onderwijs - http://www.wisfaq.nl

#62743 - Differentiëren - Student universiteit