Ik begrijp je antwoord niet helemaal.
Dat je moet laten zien dat de linker en rechternevenklassen gelijk zijn wel. Voor elke gÎG moet gH gelijk zijn aan Hg. En gHg^-1 moet gelijk zijn aan H. Nu begrijp ik dit niet helemaal:
het complement van H in G is ook een nevenklasse (want de index is 2) en dus ook linker- en rechternevenklasse tegelijk. Hoe komt u hierbij?
Tim
24-3-2010
De index is 2; dat betekent dat er precies twee linkernevenklassen zijn, in iedergeval H zelf en nog één. Nu zijn nevenklasen disjunct en hun vereniging is de hele groep; dat betekent dat G\H de andere nevenklasse moet zijn. Idem voor rechternevenklassen.
Als g in H zit geldt gH=H=Hg; als g niet in H zit geldt gH=G\H=Hg.
kphart
26-3-2010
#61996 - Algebra - Student hbo